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OVERVIEW

e (Goal: Get security professionals more engaged
e Issues

e Foundational concepts
o Attacks

e Defense




WHY SHOULD SECURITY PEOPLE CARE?

e Because Al isn’t magic
e Al is pervasive and unavoidable
e The “S” in Al stands for “Security”

e Understanding allows for better determination of risk as well as better
recommendations

e “Beta” quality at best YOU I(EE"I; :%i‘sa:n“ THAT

A 4

e “Accuracy” often used, but little understood
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IDON'T THINK'YOU KNOW WHAT
IT MEANS
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SECURITY PROFESSIONALS AND VALUE
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Al AND ML DIFFERENCE

If it’s written in Python, it’s probably machine learning

If it’s written in PowerPoint, it’s probably Al

@matvelloso
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ML AND DL DIFFERENCE

e NMachine Learning
e More traditional math and statistics
e More emphasis on feature engineering

e (Can be more explainable

e Deep Learning
o Weights and biases and the interconnection of layers
e J.ess emphasis on feature engineering

e [.ess explainable

KUDELSKI
SEGURITY a




DEEP NETWORK COMPLEXITY

INPUT HIDDEN OUTPUT
LAYER LAYERS LAYER
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COMPLEXITY IS THE ENEMY OF SECURITY

e Unless it’s cool!!!
e HFancyware

e Hides invisible complexity




SUPERVISED LEARNING

Test Data

Data

Data Model

"y . . . Testin Deplo
Acquisition Cleaning Training g PIoy
Labeled Data - Handle Nulls - Inference
. Historical - Identify features . Choose model
» Experts - Scale data . Fit m sgel ©
- Split (Test, Train)

- Adjust hyper parameters
- Evaluate performance
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UNSUPERVISED LEARNING
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TECHNICAL DEBT
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EFFORT

Configuration Data Collection

Feature

Machine
Resource
Management

Analy5|s Tools

S .

Infrastructure

Process

Extraction Management Tools

Sculley, et al., 2015
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WRONG A LOT

https://research.kudelskisecurity.com/2080/07/23/fooling-neural-networks-with-noise/

0
25
- A picture containing elephant, people, large,
75 ball
100 ‘ Description automatically generated
150
175
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https://research.kudelskisecurity.com/2020/07/23/fooling-neural-networks-with-noise/
https://research.kudelskisecurity.com/2020/07/23/fooling-neural-networks-with-noise/

WHY NOT?

&

[
Theorem 1 The non-interactive proof system defined by

e ComMON INPUT: N

e RANDOM INPUT: =z € Z

e PROVER: compute M = N~ mod ¢(N) and output
y=z mod N |

¢ VERIFIER: accept iff y"° = z mod N.

1s one-sided error perfect zero-knowledge with soundness er-
ror at most 1/d for the language SF’, where d s the smallest
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These systems are fragile ol n e g

N 4

motor scooter 0.99 parachute 1.0 bobsled 1.0 parachute 0.54

Alcorn, et al., 2019 S, OO . 20 O
fire truck 0.99 school bus 0.98 fireboat 0.98 bobsled 0.79



HEALTH AND SAFETY

Network Classification Score

vgg16 cannon 0.3467
resnet18 tractor 0.2012
alexnet tank 0.4665
densenet thresher 0.1893

Inception motor_scooter 0.5318

https://research.kudelskisecurity.com/2020/07/23/fooling-neural-networks-with-rotation/
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https://research.kudelskisecurity.com/2020/07/23/fooling-neural-networks-with-rotation/
https://research.kudelskisecurity.com/2020/07/23/fooling-neural-networks-with-rotation/

COMPUTERS DON'T VIEW THE WORLD LIKE WE
DO
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MODEL BACKDOORS

Original Image Single-Pixel Backdoor Pattern Backdoor

Gu, et al., 2019 KUDELSKI gy
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SUPPLY CHAIN ISSUES

o Attackers can exploit this lack of visibility

e Model sharing and reuse not only happens, it’s encouraged
e How do you know when there’s a problem?
e How do updates happen?

e For attackers

e (renerate once, pwn everywhere

KUDELSKI
SEGURITY a




SECTION RECAP

e Fragile systems not meant to be attacked
o Additional complexity
o Extreme lack of visibility

e Opportunities for backdoors in models

e (yenerate once, pwn everywhere
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SOFTWARE DEVELOPMENT
VS
MODEL DEVELOPMENT




PROCESS

e otch | Generate example
data
Monitor /
collect data / | Clean |
evaluate
Deploy the / |
model \
Deploy to
production ‘ SIETEE
r..-_;_‘
N\ b
Evaluate Train
model - model
Train a mode|
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-mlconcepts.html
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DEGRADATION

e NModels degrade the moment you put them in production

Tested on VirusTotal
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—e—  Sophos URLs (trained on 10m, January, Sophos labels)
. —e— VirusTotal URLs (trained on 1om, January, o-/5+ vendor labeling)
O‘J - CommonCrawl] & Phishtank URLs (trained on 10m, January)
] Jan Feb ! Mar l Apr
2017

date
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Al APPLICABILITY

HOW FAST DEPENDS ON THE PROBLEM

(MUCH MORE THAN ON YOUR ALGORITHM)

Always Changing

Cyber
Political & G:°g'e or
Economic SIS

Never Changing

Models Natural Search Banking &
Language, Social models eCommerce
Behavior Models fraud

Physical models:
Face recognition

Voice recognition

Climate models Online Social
Networking

Models/Rules

Automated trading

Real-time ad bidding
Talby, Strata Data Conference 2019 KUDELSKI
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THE STATE OF Al

e The “S” in “AI” stands for security

u——

o (Getting smaller and pushed to the edge ﬂ

e Automating away the data scientist

\N

, let's see who the

e You need a domain expert??<

e Developers, Developers, Developers!!!




WHAT DOES Al DO?

e We don’t have AGI yet

e We have a lot of narrow, single
purpose systems that we ask to:

¢ Classify something (with
probability)

e Cluster Things

e Predict something

The World’s Smartest A.l. Is Still Dumber

Than a Baby




SECTION RECAP

e Models degrade
e Dependent on the data and velocity of the problem
e This needs to be monitored

e There is no “security” in Al

e Auto ML is a “thing”
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SIMPLIFIED ATTACK SURFACE

Training
Data

Physical

Transform Training

Preprocessing Model Apply Logic gg::: unt
External
DEE:]
I Collection App / API Re-Learning

Edge Copy
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ATTACKER MOTIVATION

e PForce an incorrect prediction

e Force an incorrect decision (Classification)
e Reduce confidence in the system

e Deny access

e Julz
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COMMON ATTACKS

e Model evasion
e Model poisoning
e Membership inference

e Model theft
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PERSPECTIVE

e Hverything is data dependent

bank.com/account?num=123
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ADVERSARIAL EXAMPLES

+ .007 X
. T _|_
L sign(V,J(8,xz,y)) esign(VeJ (0, z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence
KUDELSKI
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DIFFERENT PERSPECTIVE

Milla Jovovich Also Milla Jovovich
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Eykholt, et al., 2018
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WHY THESE ATTACKS WORK
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TRANSFERABILITY FOR ATTACKS

Production Model

Attacker’s Model
KUDELSKI A
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ATTACK PROCESS
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TOOLS

e (CleverHans

e https://github.com/tensorilow/cleverhans

e Foolbox

e https://github.com/bethgelab/foolbox

e Adversarial robustness toolbox

e https://github.com/IBM/adversarial-robustness-toolbox

KUDELSKI
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https://github.com/tensorflow/cleverhans
https://github.com/bethgelab/foolbox
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POISONING

e Ability to effect the training or retraining of a system
¢ Small changes can have a big impact
e (Qutliers can affect your decision boundary

e This can have an effect on the confidence of your system
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e “The more you talk, the smarter Tay gets.”

In reply to @YOurDrugDealer

TayTweets & S
@TayandYou

@YQurDrugDealer @PTK47/3
@burgerobot @RolandRuiz123
@TestAccountint1 kush! [ I'm smoking

kush infront the police 15

30/03/2016, 6:03 PM

“ 3 v 000
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FIT LINE

50

Correlation coefficient:

0.9570

© Add data points

' Draw your own line

Show least-squares line
_ | Show mean X & Y lines

® Show residuals

CLEAR
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OUTLIER IMPACT

51

Correlation coefficient:

0.8904

© Add data points

' Draw your own line

Show least-squares line
| Show mean X & Y lines

Show residuals

CLEAR
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OUTLIER IMPACT

54

Correlation coefficient:

0.7857

© Add data points

' Draw your own line ’

Show least-squares line
_| Show mean X & Y lines

Show residuals

CLEAR
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SECTION RECAP

® You can directly attack a model
e There are toolkits to help
¢ Small changes can have a large impact

e Don’t underestimate lulz
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DEFENDING



Al DEFENSE SUMMED UP

You gotta know when to hold 'em,
know when to fold 'em, know when
to walk away, know when to run.

— Kenny Regers —

AZ QUOTES
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DEFENSE

e Defenses are an active area of research
e AKA, too bad for you

e Advice isn’t always good

o Work with your developers
e Raise awareness

e Threat model




THE KUDELSKI SECURITY APPROACH

Inventory Deconstruct Recommend

Evaluate
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DEFENSES

e Allow only specific data sources

e [imit retraining activities

e Don’t expose raw statistics

e [Use multiple sources for validation

e HEXxercise good security hygiene

See Ariel Herbert-Voss (Black Hat 2020)
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BE CAREFUL

e Use caution with specific technical recommendations
e May affect performance and accuracy and you will not be invited to developer parties!

e Fully homomorphic encryption

o Defengive distillation

e HFeature squeezing

e FEnsamble methods

e Start with the basics and move on if necessary
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SECTION RECAP

e Understand your risk and exposure
e (General security hygiene is important

e The goal is to make it harder for an attacker
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PRIVACY

e Incredibly important, even though we didn’t talk about it :(
e Privacy breaches are forever!

e Hederated Learning

e (On device processing

e https://github.com/IBM/differential-privacy-library

e https://github.com/OpenMined/PySy{t
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ANY QUESTIONS?

Nathan Hamiel

nathan.hamiel @ kudelskisecurity.com

@nathanhamiel

LinkedIn

kudelskisecurity.com

N
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