

ATTACKING AND DEFENDING AI Al for Security Professionals KUDELSKI SECURITY

NATHAN HAMIEL Head of Security Research

ABOUT ME

Head of Security Research Public Speaker Black Hat Review Board Member Thinking / Breaking / Building

OVERVIEW

- Goal: Get security professionals more engaged
- Issues
- Foundational concepts
- Attacks
- Defense

WHY SHOULD SECURITY PEOPLE CARE?

- Because AI isn't magic
- AI is pervasive and unavoidable
- The "S" in AI stands for "Security"
- recommendations
- "Beta" quality at best

• "Accuracy" often used, but little understood

Understanding allows for better determination of risk as well as better

KUDELSKI SECURITY

SECURITY PROFESSIONALS AND VALUE

AI Safety

•

AIAND ML DIFFERENCE

If it's written in **Python**, it's probably machine learning

If it's written in **PowerPoint**, it's probably AI

@matvelloso

MLAND DL DIFFERENCE

- Machine Learning
 - More traditional math and statistics
 - More emphasis on feature engineering
 - Can be more explainable
- Deep Learning

- Weights and biases and the interconnection of layers
- Less emphasis on feature engineering
- Less explainable

INPUT

LAYER

DEEP NETWORK COMPLEXITY

HIDDEN LAYERS

OUTPUT LAYER

COMPLEXITY IS THE ENEMY OF SECURITY

- Unless it's cool!!!
- Fancyware

• Hides invisible complexity

SUPERVISED LEARNING

UNSUPERVISED LEARNING

TECHNICAL DEBT

EFFORT

Sculley, et al., 2015

ACCURACY

• Do you think of AI as being accurate?

WRONG A LOT

https://research.kudelskisecurity.com/2020/07/23/fooling-neural-networks-with-noise/

A picture containing elephant, people, large, ball

Description automatically generated

WHY NOT?

- Common Input: N
- RANDOM INPUT: $x \in X$
- $y = x^M \mod N$
- VERIFIER: accept iff $y^N = x \mod N$.

t Text: A picture containing bird

$$Z_N^*$$

• PROVER: compute $M = N^{-1} \mod \phi(N)$ and output

is one-sided error perfect zero-knowledge with soundness error at most 1/d for the language SF', where d is the smallest

school bus 0.98 fire truck 0.99

These systems are fragile

Alcorn, et al., 2019

school bus 1.0 garbage truck 0.99 punching bag 1.0 snowplow 0.92

motor scooter 0.99 parachute 1.0

bobsled 1.0

parachute 0.54

fireboat 0.98

bobsled 0.79

HEALTH AND SAFETY

https://research.kudelskisecurity.com/2020/07/23/fooling-neural-networks-with-rotation/

Network	Classification	Score
vgg16	cannon	0.3462
resnet18	tractor	0.2012
alexnet	tank	0.4665
densenet	thresher	0.1893
Inception	motor_scooter	0.5318

COMPUTERS DON'T VIEW THE WORLD LIKE WE DO

MODEL BACKDOORS

Original Image

Single-Pixel Backdoor

Gu, et al., 2019

Pattern Backdoor

SUPPLY CHAIN ISSUES

- Attackers can exploit this lack of visibility
- Model sharing and reuse not only happens, it's encouraged
 - How do you know when there's a problem?
 - How do updates happen?
- For attackers
 - Generate once, pwn everywhere

SECTION RECAP

- Fragile systems not meant to be attacked
- Additional complexity
- Extreme lack of visibility
 - Opportunities for backdoors in models
 - Generate once, pwn everywhere

SOFTWARE DEVELOPMENT VS MODEL DEVELOPMENT

DEGRADATION

Sanders, Black Hat USA 2017

• Models degrade the moment you put them in production

AIAPPLICABILITY

HOW FAST DEPENDS ON THE PROBLEM

Never Changing

Talby, Strata Data Conference 2019

(MUCH MORE THAN ON YOUR ALGORITHM)

Always Changing

THE STATE OF AI

- The "S" in "AI" stands for security
- Getting smaller and pushed to the edge
- Automating away the data scientist
- You need a domain expert???
 - Developers, Developers, Developers!!!

WHAT DOES AI DO?

- We don't have AGI yet
- We have a lot of narrow, single purpose systems that we ask to:
 - Classify something (with probability)
 - Cluster Things
 - Predict something

The World's Smartest A.I. Is Still Dumber Than a Baby

SECTION RECAP

- Models degrade
 - Dependent on the data and velocity of the problem
 - This needs to be monitored
- There is no "security" in AI
- Auto ML is a "thing"

ATTACKS

KUDELSKI SECURITY

ATTACKER MOTIVATION

- Force an incorrect prediction
- Force an incorrect decision (Classification)
- Reduce confidence in the system
- Deny access
- Lulz

COMMONATTACKS

- Model evasion
- Model poisoning
- Membership inference
- Model theft

PERSPECTIVE

• Everything is data dependent

bank.com/account?num=123

ADVERSARIAL EXAMPLES

 $+.007 \times$

 \boldsymbol{x}

"panda" 57.7% confidence

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$

"nematode" 8.2% confidence

 $\boldsymbol{x} +$ $\epsilon \operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon" 99.3 % confidence

DIFFERENT PERSPECTIVE

Milla Jovovich

Also Milla Jovovich

STOP SIGN

Eykholt, et al., 2018

WHY THESE ATTACKS WORK

KUDELSKI SECURITY

TRANSFERABILITY FOR ATTACKS

Attacker's Model

ATTACK PROCESS

•

TOOLS

- CleverHans
 - https://github.com/tensorflow/cleverhans
- Foolbox

- https://github.com/bethgelab/foolbox
- Adversarial robustness toolbox

https://github.com/IBM/adversarial-robustness-toolbox

POISONING

- Ability to effect the training or retraining of a system
- Small changes can have a big impact
- Outliers can affect your decision boundary
- This can have an effect on the confidence of your system

TAY

• "The more you talk, the smarter Tay gets."

FIT LINE

50 Correlation coefficient: 0.9570

Points:

- Add data points O Draw your own line
- Show least-squares line
- Show mean X & Y lines
- Show residuals

CLEAR

OUTLIER IMPACT

Points: 51

Correlation coefficient: 0.8904

- Add data points Draw your own line
- Show least-squares line
- Show mean X & Y lines
- Show residuals

CLEAR

OUTLIER IMPACT

Points:

54

Correlation coefficient: 0.7857

 Add data points Draw your own line

Show least-squares line Show mean X & Y lines Show residuals

CLEAR

SECTION RECAP

- You can directly attack a model
- There are toolkits to help
- Small changes can have a large impact
- Don't underestimate lulz

DEFENDING

AI DEFENSE SUMMED UP

You gotta know when to hold 'em, know when to fold 'em, know when to walk away, know when to run.

— Kenny Rogers

AZQUOTES

DEFENSE

- Defenses are an active area of research
 - AKA, too bad for you
- Advice isn't always good
- Work with your developers
 - Raise awareness
 - Threat model

THE KUDELSKI SECURITY APPROACH

Inventory

Evaluate

Deconstruct

Recommend

Asses

DEFENSES

- Allow only specific data sources
- Limit retraining activities
- Don't expose raw statistics
- Use multiple sources for validation
- Exercise good security hygiene

See Ariel Herbert-Voss (Black Hat 2020)

BE CAREFUL

- Use caution with specific technical recommendations
- - Fully homomorphic encryption
 - Defensive distillation
 - Feature squeezing
 - Ensamble methods

Start with the basics and move on if necessary

May affect performance and accuracy and you will not be invited to developer parties!

SECTION RECAP

• Understand your risk and exposure

- General security hygiene is important
- The goal is to make it harder for an attacker

PRIVACY

- Privacy breaches are forever!
- Federated Learning
- On device processing
- https://github.com/IBM/differential-privacy-library
- https://github.com/OpenMined/PySyft

Incredibly important, even though we didn't talk about it :(

ANY QUESTIONS?

Nathan Hamiel

nathan.hamiel @ kudelskisecurity.com

@nathanhamiel

LinkedIn

kudelskisecurity.com

